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Lecture 4: General Covariance and gauge theories

4.1 What’s special about GTR?

Since the theory’s inception, the general covariance of GTR has often been taken to be
one of its substantial, defining characteristics. But equally, since Kretchmann’s (1917)
response to Einstein’s original claims for general covariance, many see the requirement
that a theory should be formulated generally covariantly as physically empty: (virtually?)
any theory can be so formulated. Must one of these two points of view be rejected, or
can they be reconciled?

General relativity is distinguished from other dynamical field theories by
its invariance under active diffeomorphisms. Any theory can be made in-
variant under passive diffeomorphisms. Passive diffeomorphism invariance
is a property of the formulation of a dynamical theory, while active diffeo-
morphism invariance is a property of the dynamical theory itself. (Gaul &
Rovelli 2000)

One task for this lecture is to understand and assess this claim.

4.2 Pre-GR theories and the Hole Argument

4.2.1 Local spacetime theories

Earman & Norton (1987) state a preference for local spacetime theories; i.e. formulations
of theories

1. in terms of models 〈M , O1, . . . , On〉

2. satisfying field equations Ok = 0, . . . , On = 0

3. such that every such (n + 1)-tuple satisfying (2) is a model.

Examples include GTR and “special relativistic electromagnetics”.
Note that, although they advocate identifying M with spacetime, rather than M plus

additional structure, they argue that “manifold-plus-absolute-structure” substantivalists
must deny the physical equivalence of models related by hole diffeomorphisms.

4.2.2 Stachel’s criticisms

Stachel intends to offer an interpretation of the hole argument that leads to a concept of
general covariance which, like the hole argument itself, is supposed not to be applicable
to pregeneral-relativistic theories.

chronogeometric structures “characterize the behavior of (ideal) clocks and mea-
suring rods” (Stachel 1993, 134)

affine structures “characterize the behavior of freely falling . . . test particles” (Stachel
1993, 134)
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dynamical structures characterize “the behavior of physical fields and/or particles in
spacetime. . . usually specified by requiring that the dynamical variables be subject
to a set of differential equations” (Stachel 1993, 135)

In any physical theory that is either globally special-relativistic, like spe-
cial relativity, or locally special-relativistic, like general relativity, there is
a certain ten-component tensor field encoding all information about the
chronogeometrical and affine structures of spacetime. It is called the met-
ric tensor field, or “the metric” for short. In general relativity, the affine
structure of spacetime is identical with the inertio-gravitational field. Con-
sequently the metric tensor plays a dual role in general relativity: It en-
genders not only all the spacetime structures, but also all the gravitational
structures of the theory. It is worthwhile to emphasize this point since it is
crucial to the hole story: Spacetime and gravitational field in general rela-
tivity are like love and marriage in the old song. In its dual role as source of
all gravitational structures, the metric is a dynamical structure, obeying cer-
tain gravitational field equations. In its chronogeometric role, this implies
that all the spacetime structures of the general theory are also dynamical
structures. (Stachel 1993, 136)

individuating field any structure on a differentiable manifold that individuates the
points of the manifold by some property or properties that characterize(s) each
of the points (cf. Stachel 1993, 139; N.B. the issue of symmetries is dodged on
p. 143)

. . . we can now identify the missing element in the resolution of the hole
argument . . . To justify the identification of a whole equivalence class of
drag-along metrics with one gravitational field, we must stipulate that, in
general relativity, there is no structure on the differentiable manifold that is
both independent of the metric tensor and able to serve as an individuating
field (Stachel 1993, 140)

[In 1905, Einstein gave a] careful definition of a physical frame of refer-
ence. He defined it in terms of a network of measuring rods and a set
of suitable-synchronized clocks, all at rest in an inertial system. He used
such a system of rods and clocks to give physical meaning to a preferred
coordinate system associated with the inertial frame of reference. In my
language (admittedly anachronistic), the rods and clocks serve to establish
a nondynamical individuating field for the points of Minkowski spacetime.
(Stachel 1993, 141)

The Principle of General Covariance (1) There are no individuating fields in space-
time that are independent of the metric tensor field; (2) the metric field deter-
mines both chronogeometrical and inertio-gravitational structures of spacetime;
and (3) The metric field obeys a set of generally covariant field equations. (Stachel
1993, 142)
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A major weakness of [Earman and Norton’s] discussion is that Earman and
Norton do not consider the role of individuating field. . . When individ-
uating fields are introduced, previously physically indistinguishable models
often become distinct. For example, on Earman and Norton’s definition
of a “special relativistic electromagnetic” model, there is only one generic
model of the Coulomb field generated by a given charge. The field of such
a charge at one place and the field of a similar charge at another place are
indistinguishable, as are the fields of the charge at rest and a similar one
in uniform motion. The distinctions between such fields cannot be for-
mulated in their definition of a model, which certainly makes life in the
laboratory rather difficult! (1993, 146–7)

The symmetry group of a differentiable manifold is the group of diffeo-
morphisms of that manifold; so only a theory that has the diffeomorphism
group as the symmetry group of its spacetime structures requires a differen-
tiable manifold for its most appropriate. . . models. As we have seen, New-
tonian and special-relativistic theories have much smaller space-time sym-
metry groups, so manifold-plus models of these theories introduce “empty
or superfluous” elements into these models. (Stachel 1993, 150)

The reason why Earman and Norton’s concept of general covariance is
trivial should be clear. . . By considering the drag along of all physical fields
over a bare manifold, we have passed beyond the real physics. (Stachel 1993,
153)

• Stachel’s own examples of individuating fields in pre-GTR theories (e.g. Einstein’s
inertially moving network of rods and clocks in STR) are neither nondynamical
nor independent of the spacetime structure fields.

• In the GTR hole construction one considers the drag along of “all physical fields
over a bare manifold”: why isn’t the general covariance of GTR just as trivial?

• Earman and Norton are not committed to there being only one generic model of
the Coulomb field generated by a given charge in any worrying sense if the mod-
els are understood as containing solutions of the dynamical fields representing,
e.g., laboratories.

• Even pre-GTR theories satisfy Stachel’s Principle of General Covariance (al-
though the generally covariant equations that the spacetime structure fields satisfy
(that do not couple these fields to the dynamical fields) are rather uninteresting,
e.g., ‘curvature = 0’).

4.3 Background independence

Active diff invariance should not be confused with passive diff invariance,
or invariance under change of coordinates. . . . A field theory is formulated
in manner invariant under passive diffs (or change of coordinates), if we
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can change the coordinates of the manifold, re-express all the geometric
quantities (dynamical and non-dynamical) in the new coordinates, and the
form of the equations of motion does not change. A theory is invariant
under active diffs, when a smooth displacement of the dynamical fields (the
dynamical fields alone) over the manifold, sends solutions of the equations of
motion into solutions of the equations of motion. Distinguishing a truly
dynamical field, namely a field with independent degrees of freedom, from
a nondynamical field disguised as dynamical (such as a metric field g with
the equations of motion Riemann[g] = 0) might require a detailed analysis
(for instance, Hamiltonian) of the theory. (Rovelli 2001, original emphasis)

• Ban absolute objects

• When made generally covariant, the action should contain no fields that are func-
tions of the independent variables which are not themselves varied. (But do these
two notions always coincide? See Sorkin 2002.)

4.4 Getting a fix on gauge

In a series of recent papers (Earman 2003, 2002a,d,b), John Earman has suggested that
GTR satisfies a strong version of general covariance—that the space-time diffeomor-
phism group be a gauge group of the theory—that familiar pre-GTR theories fail to
satisfy.

4.4.1 The Lagrangian formalism and Noether’s 2nd theorem

If the action principle is (quasi-)invariant under a group of transformations G∞r that de-
pend on r arbitrary functions of all the dependent variables, then Noether’s 2nd theorem
tells us that there are r linearly independent mathematical identities constructed from
the Euler-Lagrange expressions and their derivatives. The Euler-Lagrange equations are
not all independent. There are more unknowns than independent equations.

One standardly treats the elements of G∞r as gauge transformations, i.e. transformations
that map solutions of the theory onto mathematically distinct solutions that represent
the exactly same physical states/histories.

4.4.2 The constrained Hamiltonian formalism

Gauge transformations are those generated by the first class constraints (those constraints
whose Poisson bracket with any constraint vanishes on the constraint surface). (See
Belot & Earman 2000, 2001)

Note that when time evolution is pure gauge, gauge invariant quantities do not
change in time. The dynamics is “frozen” (see Earman 2002c).

4.4.3 Absolute objects

A group of spacetime transformations are gauge if they contain arbitrary functions of
the spacetime variables and leave invariant all of the absolute elements of the spacetime
structure.
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[A theory’s satisfying weak general covariance] does not guarantee that the
theory satisfies the strong requirement; indeed, as judged by the light of the
constrained Hamiltonian formalism the gauge freedom of a weakly gener-
ally covariant theory may fall far short of diffeomorphism invariance, and
as a result the observables of the theory many be much richer than the class
of diffeomorphism invariants. (Earman 2002c, 15–6)

Suppose the genuine observables of GTR are diffeomorphic-invariant quantities. Is
the set of observables of any familiar pre-GTR theories really much richer than the class
of diffeomorphism invariants?
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Noether’s theorems’, Diálogos (Puerto Rico) 79. E-print: PITT-PHIL-SCI00000821.

Earman, J. & Norton, J. (1987), ‘What price substantivalism? the hole story’, British
Journal for the Philosophy of Science 38, 515–25.

Earman, J. (2002a), ‘Gauge matters’, Philosophy of Science 69, S209–20.

Earman, J. (2002b), Laws, symmetry, and symmetry breaking; invariance, conservation
principles, and objectivity. Presidential address, PSA 2002; e-print available: PITT-
PHIL-SCI00000878.

Earman, J. (2002c), ‘Thoroughly modern McTaggart’, Philosophers’ Imprint 2. URL:
http://www.philosophersimprint.org/002003/.

Earman, J. (2002d), Two faces of general covariance. pre-print.

Earman, J. (2003), Getting a fix on gauge, in K. Brading & E. Castellani, eds, ‘Symme-
tries in Physics: Philosophical Reflections’, Cambridge University Press, Cambridge.

Gaul, M. & Rovelli, C. (2000), ‘Loop quantum gravity and the meaning of diffeomor-
phism invariance’, Lecture Notes in Physics 541, 277–324. E-print: gr-qc/9910079.
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